Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure

نویسندگان

  • J. Zhu
  • J. L. Zhang
  • P. P. Kong
  • S. J. Zhang
  • X. H. Yu
  • J. L. Zhu
  • Q. Q. Liu
  • X. Li
  • R. C. Yu
  • R. Ahuja
  • W. G. Yang
  • G. Y. Shen
  • H. K. Mao
  • H. M. Weng
  • X. Dai
  • Z. Fang
  • Y. S. Zhao
  • C. Q. Jin
چکیده

Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconductivity in Strong Spin Orbital Coupling Compound Sb2Se3

Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial s...

متن کامل

Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3.

We show that the strongly spin-orbit coupled materials Bi2Te3 and Sb2Te3 and their derivatives belong to the Z2 topological-insulator class. Using a combination of first-principles theoretical calculations and photoemission spectroscopy, we directly show that Bi2Te3 is a large spin-orbit-induced indirect bulk band gap (delta approximately 150 meV) semiconductor whose surface is characterized by...

متن کامل

Engineering a p+ip superconductor: Comparison of topological insulator and Rashba spin-orbit-coupled materials

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We compare topological insulator materials and Rashba-coupled surfaces as candidates for engineering p + ip superco...

متن کامل

Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3

Magnetism in zigzag graphene nanoribbons (GNRs) has received enormous attention recently, due to the one-dimensional nature of this phenomenon, as well as its potential applications in the field of spintronics. In this work, we present a density functional theory (DFT) investigation of H-passivated GNRs on the (111) surface of the topological insulator Sb2Te3. We show that the chemical interact...

متن کامل

Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures

Recently, theoretical studies show that layered HfTe5 is at the boundary of weak &strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic &crystal structures for HfTe5 w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013